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Introduction 
One of the most enchanting experiences I had was making a wish as my family set alight a floating 
lantern on New Year’s Eve. Hence, their beauty has left a strong imprint on my mind. However, I was 
equally captivated by the prospect of exploring the mathematics behind their shape due to my 

long-standing interest in the subject. They are typically shaped like a lightbulb, so that hot gases can be 
held close to the top of the lantern to produce more lift [1]. This is shown in figure 1 below.


A similar shape is also seen in other objects such as helium balloons, which 
suggests that having a smaller radius at the base of a balloon is beneficial 
towards floating.


However, greater volume would produce more lift [3], which could allow the 
lantern to float longer and higher. At the same time, minimising surface area 
would reduce the weight and cost of the lantern. Hence, obtaining the ideal 
shape may be viewed as an optimisation between volume and surface area. 
Therefore, the aim of this investigation is to explore different mathematical 
models, which lead to different methods of optimising the surface area of a 
floating lantern.


To begin, it was necessary to set a scale since the principles discussed are also 
embodied by much larger objects such as hot air balloons. Hence, the mass of the 
floating lantern being optimised in this investigation was fixed based on lanterns I 
purchased, which weighed 0.034 kg each when deflated. Using this, I wanted to 
ascertain the minimum volume required for the lanterns to float. This is because 
the minimum volume needed would allow the surface area to be minimised the 
most while keeping the lanterns operational.

 
To find the minimum volume, the following formula was used:


� 


where ‘ρ’ represents density [4]. Here, it was assumed that the lantern would use paraffin wax, similar to 
the one that was purchased. Since paraffin wax releases CO2, and burns at a temperature of about 
200ºC [5], the following assumptions were made:

• Density of air outside the lantern is 1.204 kg m-3 (at 1 atm pressure and 20ºC) [6].

• Density of CO2 inside the lantern is 1.118 kg m-3 (at 1 atm pressure and 200ºC) [7].


ρobject  <  ρair

�1

Figure 1 The typical 
shape of a floating 
lantern [2]

Figure 2 The floating 
lantern purchased for 
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Using this information, the calculation was continued. Here, ‘m’ is used to denote mass and ‘V’ is used 
to denote volume, which is to be found.


� 


� 


The mass of the inflated lantern is the sum of the mass of the deflated lantern and the carbon dioxide 
inside the lantern. Therefore,


� 	 	 	 	 	 	 	 [ �  ]


� 


�   ,


As a result, the volume of the lantern was kept constant at 0.4 m3 for the rest of the investigation.

After this, the aim was to construct mathematical models of floating lanterns to explore which could 
lead to an accurate optimisation.


To do this, each model will be adjusted based on two variables:

• A radius parameter for the lantern (r)

• A height parameter (h)


The way in which these parameters are defined and measured may be different for each model.


Model 1: Solid of revolution using a quadratic equation


The most intuitive model that I could think of was a solid of revolution. This is 
because floating lanterns generally have cross-sections that are 
approximately circular. A solid of revolution is also likely to provide a simplistic 
method of optimisation.


To determine which function would accurately model a lantern, I traced over 
the image shown previously, and tried to recognise the function that could be 
rotated. This is shown in figure 3.


The edges of the lantern appear to align with a quadratic function, which is 
indicated by the black lines. The domain of this function is shown using 
purple lines.


The white line represents the position of largest radius (r) of the lantern. Visually, it may be inferred that 
approximately one fourth of the height (h) should be above the largest radius.
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Figure 3 Tracing over a 
lantern to find the solid 
of revolution



Using this information, the model was planned as shown in figure 4, 
and modelled using the following function:




� 


‘r’ was added as coefficient to ‘y2’ to ensure that the outer edges of 
the lantern model did not overlap. This was rotated 2π radians around 
the y-axis.

As ‘r’ varies, ‘h’ must adjust to maintain the same volume of

0.4 m3. Therefore, it was important to find a relation between ‘h’ and 
‘r.’ This process is shown below.


� 


� 


� 


Using Wolfram Alpha, this was simplified to:


Three examples of the model are shown below using different values of ‘h.’ All models in this 
investigation were plotted using CalcPlot3D[8].
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Figure 4 Defining parameters of 
the solid of revolution


(all diagrams drawn on Sketchpad 5.1[11])
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Following this, the next step was to minimise surface area. Surface area ‘S’ is given by[9]:





Here,                              is added to account for the fact that the top of the lantern is not open. Since 
the x-value at y = 0.25h represents the radius (‘R’) at the top of the lantern, the area of the ‘roof’ is given 
by substituting this into the expression � .


� 


Since this was too difficult to simplify manually, it was entered

into Wolfram Mathematica[10] with ‘r’ substituted in terms of ‘h.’

Following this, a graph plotting ‘S’ against ‘h’ was generated.

However, as shown in figure 8, this did not yield any results

due to the involvement of hypergeometric 2F1. The code I wrote

for this may be found in the appendix.


Euler’s method also could not be used due to the fact that the

integral contains variables, which cannot be easily manipulated using spreadsheets. Hence, this 
method was unfortunately found to be unsuccessful at the level of this investigation.


Model 2: Sphere on paraboloid


Another model that resembles the shape of a floating lantern can be created 
using a sphere and an elliptic paraboloid. This is more accurate than the solid of 
revolution as it models the dome-shaped top of the lantern more closely. 
Moreover, the sloped sides of the lantern towards the bottom also appear to be 
slightly more accurate as they are generally not as curved as the revolved 
quadratic model suggests.


In figure 9, the black lines show a cross-section of the intended model. While 
the sphere cross-section is drawn completely to indicate its shape, the domain 
of the sphere would actually be restricted to the the first purple line, which 
coincides with its diameter. Similarly, the domain of the paraboloid would be 
between the purple dotted lines.


This model was planned as shown in figure 10 on the next page.
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Figure 8 ‘S’ against ‘h’; h=0.01 to h=2

π(r(0 . 25h)2 − r)
2

Figure 9 A sphere 
and paraboloid 
traced over a lantern

S = 2π∫ x 1 + ( dx
dy )

2

dy + π r(0 . 25h)2 − r
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The sphere in the model was defined using the following implicit 
equation[12]:


� 


In order to derive the implicit equation of the paraboloid, the 
following process was used, where ‘a’ was to be found[13]:


� 	 � 


� 		 � 	 	 � 	 	 � 


Similar to model 1, it was important to find a relation 
between ‘r’ and ‘h’ so that the lantern could maintain the 
same volume ‘V’, which is given by:


� 


In order to find the volume of the paraboloid, the formula below was used[14] since the shape is 
rotationally symmetrical around the z-axis.


� 


As this paraboloid is only defined between z=-h+0.3 and z=0, the remaining part of the paraboloid 
underneath z=-h+0.3 had to be subtracted.


� 


The steps taken to find the radius at z=-h+0.3 are shown below, where the radius to be found is denoted 
by ‘p.’


� 


� 


� 





Hence, the volume of the paraboloid can now be simplified using Wolfram Alpha as shown:


� 
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Figure 10 Defining parameters 
for sphere on paraboloid model
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h

Only the positive root is taken since 
radius cannot be negative.

Here, ‘h’ is the total length of the paraboloid and ‘R’ is 
the largest radius, which is found at the top-most 
circular cross-section.
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Following this, the total volume ‘V’ of the lantern can be given by:


� 


Using Wolfram Alpha, the relation between ‘r’ and ‘h’ was simplified to be:


Three examples of the sphere on paraboloid model are shown on below using different values of ‘r,’ 
which produced different values of ‘h.’


The next step was to find 

the surface area of the lantern. Since the surface area of the 
hemisphere is known to be 2πr2, the total surface area ‘S’ can be represented using the equation:


� 


The process used to find the surface area of the paraboloid is shown below[15].


� � 	 	         � 


� 


Here, the equation includes the section below z=-h+0.3, which needed to be subtracted. The radius at 


z=-h+0.3 is denoted using ‘p,’ as it was before. Since this smaller section is geometrically similar to the 
larger paraboloid, ‘r’ and ‘h’ are directly substituted with ‘p’ and 0.3 respectively and placed into the 
same formula. The altered equation for ‘S’ which subtracts this section is shown on the next page.
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�6
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� 


�

h =
1
r2 [ − 0 . 666667r3 + (2 . 68786 × 10−14)

× (6 . 15181 × 1026)r6 + (6 . 2287 × 1025)r4 − (2 . 3498 × 1026)r3 + (2 . 2439 × 1025)
+0 . 127324]

Figure 11 r=0.45, h=0.7200

Figure 12 r=0.425, h=0.8935
Figure 13 r=0.4, h=1.09916

[15] www.quora.com/How-would-you-calculate-the-area-of-a-paraboloid-z-x-2+y-2-with-1-le-z-le-4

http://www.quora.com/How-would-you-calculate-the-area-of-a-paraboloid-z-x-2+y-2-with-1-le-z-le-4
http://www.quora.com/How-would-you-calculate-the-area-of-a-paraboloid-z-x-2+y-2-with-1-le-z-le-4


� 


In order to find the minimum surface area, values of ‘r’ were taken from 0.05 to 0.525, with intervals of 
0.025. Values of ‘r’ beyond 0.525 were not taken because they produced values of ‘h’ which were less 
than 0.3. Since the domain of the paraboloid is between z=-h+0.3 and z=0, these values of ‘h’ produced 
errors in the model. 


Using the relation found earlier, corresponding ‘h’ values were produced for each value of ‘r.’ This 
process was carried out using a spreadsheet, which can be found in the appendix. These were then 
used to find ‘p’, and all three variables (r, h, and p) were substituted into the equation above. The 
equation was then evaluated using Wolfram Alpha, and the resulting values of ‘Sparaboloid’ were noted 
down. A part of this spreadsheet is shown below, the rest of which is found in the appendix.


Following this, ‘Sparaboloid’ was added to the surface area 
of the hemisphere, given by:


� 


This produced the total surface area ‘S’ of the lantern.




To find the value of ‘r' which resulted in the minimum value of ‘S,’ the graph below was plotted.


The graph shown in figure 16 suggests that the optimal surface area is found at the largest possible 
radius, where r=0.525 and h=0.3518073. When plotted, these values model the lantern in figure 15, 
which takes on a rather unconventional shape. While it may be mathematically optimal, it is difficult to 
determine whether it would be physically efficient. In order to prevent the model from recognising such 
lanterns as optimal, variables may need to be restricted to different ranges, or physical formulae may 
need to be taken into account.
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2
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2(0 . 3)y
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2
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Shemisphere = 2πr2
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Figure 14 Spreadsheet used to find ‘S'

Figure 16 ‘S’ plotted against ‘r’Figure 15 The optimal lantern



Model 3: Inverted teardrop 

The inverted teardrop model is perhaps the most accurate, since it closely 
matches the slightly flattened top of the lantern, as well as the curve of the 
sides. In some ways, it also provides a more simplistic approach than the 
second model as it only requires one surface.


On figure 17, the cross-sectional shape of a teardrop is traced over the image 
of a floating lantern. As seen on the figure, the black lines indicate the teardrop 
shape, and the purple line shows where the domain should be restricted. This 
figure brings out the accuracy with which the teardrop model fits onto the 
typical form of a lantern, as there are no large disparities visible between the 
edges of the lantern and the outline of the teardrop.


The model is then planned as shown on figure 18. Here, the height 
parameter ‘h’ is defined as the total length of the teardrop. However, 
the domain along the z-axis is restricted to be above -0.25h. The 
variable ‘r’ is taken to be the radius that coincides with the x-y plane.


In order to define the teardrop model, the following parametric 
equations were used[16]:


� 


� 


� � 


In the equations, ‘φ’ had to be between 0 and π so that the teardrop rotated fully around the z-axis. 
However, the domain of ‘θ’ had to be determined as it would influence the domain along the z-axis, 
which needed to be restricted as shown in Figure 18. The steps taken to do this are shown below.




� 	 	 	 � 	 	 	 � 		 	 � � 


This results in             and              , which signify the end-points of the domain of θ. By verifying pairs of 
θ and ‘z’ values, the domains of θ and φ were determined to be:


�       and      � 


The next step was to find the volume so that a relation between ‘r’ and ‘h’ could be drawn. To simplify 
the process, the model was integrated using the disc method as shown next[17].




x = r(1 − cos(θ))sin(θ)cos(φ)
y = r(1 − cos(θ))sin(θ)sin(φ)
z = −

h
2

cos(θ )

z = −
h
2

cosθ z ≥ −
h
4

−
h
2

cosθ ≥ −
h
4

cos(θ ) ≤
1
2

0 ≤ φ ≤ π
π
3

≤ θ ≤
5π
3
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Figure 18 Defining parameters 
for the inverted teardrop model

Figure 17 Tracing an 
inverted teardrop over 
the image of a lantern

θ =
5π
3

θ =
π
3

[ In the parametric for ‘z’, 
the coefficient is negative 
to invert the teardrop. ]

[16] paulbourke.net/geometry/teardrop/

[17] www.mathalino.com/reviewer/derivation-formulas/derivation-formula-volume-sphere-integration
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Since all horizontal cross-sections are circular in shape, they can be treated as discs which make up 
the total volume ‘V’ of the model. The radius of each disc would be its corresponding ‘x' value and the 
height of each disc would be a small difference in ‘z.’ Hence,


� 


� 


Here, the integral was split to avoid errors. To evaluate this, ‘x’ would have to be found in terms of ‘z.’ 
This was carried out as shown below.


� 


� 	     where        � 


This can now be substituted into the integral shown above.


� 


With Wolfram Alpha, this was simplified to � . This is useful since it can be used to 
approximate the volume of similar teardrop shapes with the same parameters. Hence, using the 
equation for ‘V’ and the known value of 0.4 m3, the relation between ‘r’ and ‘h' was found to be:


� � 


Using this relation, three examples of the teardrop model are shown below.


Finally, the surface area ‘S’ of the model had to be found and optimised. The process carried out to find 
‘S’ in terms of ‘r’ and ‘h’ is shown on the next page[18].


dV = πx2dz

V = π∫
0

−0.25h
x2dz + π∫

0.5h

0
x2dz

x = r(1 − cosθ)sinθ

z = −
h
2

cosθ 0 ≤ θ ≤ 2π

V = π∫
0

−0.25h [r(1 +
2z
h )sin(arccos(−

2z
h ))]

2

dz + π∫
0.5h

0 [r(1 +
2z
h )sin(arccos(−

2z
h ))]

2

dz

V = 2 . 474hr2

h =
V

2 . 474r2
=

0 . 4
2 . 474r2
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Using the parametric for ‘z’:


� 	 	 �−
2z
h

= cosθ θ = ar ccos(−
2z
h )

�x = r(1 +
2z
h )sin(arccos(−

2z
h ))

�h =
0 . 16168148747

r2

Figure 19 r=0.28, h=2.06226 Figure 20 r=0.32, h=1.57892 Figure 21 r=0.4, h=1.01051

[18] www.youtube.com/watch?v=IdVILLByihs&amp;t=22s
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Since the model is a parameterised surface, it can be defined in the following notation:


� 


where f, g, and h are the parametric functions of ‘x’, ‘y’, and ‘z’ respectively.


Please note that the vector �  is not the same as the radius parameter ‘r.’ Here, �  represents a general 
position vector and can be distinguished from ‘r' by the arrow above it.



Hence, the surface area of the model can be found using the formula:


The partial derivatives taken to produce �   and  �   are shown below.


� 	 	 	 � 


� 	 	 	 � 


� 	 	 	 	 	 � 


The next step was to find the cross product of �   and  �   and its magnitude, which would become the 

integrand in the equation for ‘S.’ This was simplified using Wolfram Alpha.





� 


This can now be placed in the equation for ‘S’ as shown below.


� 


Here, the limits have also been defined — the limits of the inner integral cover the range of values of θ, 
and the limits of the outer integral cover the range of values of φ used in the model.


r = < f(θ, φ), g(θ, φ), h(θ, φ) >

r r

r θ r φ

∂x
∂θ

= r cosφcosθ − r cosφ
∂x
∂φ

= − r(1 − cosθ)sinθ sinφ

∂ y
∂θ

= r sinφcosθ − r sinφ
∂ y
∂φ

= r(1 − cosθ)sinθ cosφ

∂z
∂θ

=
h
2

sinθ
∂z
∂φ

= 0

r θ r φ

|| r θ × r φ || = 0 . 5r sin2θ (cosθ − 1)2[h2sin2θ + 4r2(cosθ − 1)2]

S = 0 . 5r∫
π

0 ∫
5π
3

π
3

sin2θ (cosθ − 1)2[h2sin2θ + 4r2(cosθ − 1)2]dθ dφ
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� 	     where	   �         ,       �S = ∬
R

|| r θ × r φ ||dθdφ r θ = ⟨ ∂x
∂θ

,
∂ y
∂θ

,
∂z
∂θ ⟩ r φ = ⟨ ∂x

∂φ
,

∂ y
∂φ

,
∂z
∂φ ⟩



In order to evaluate the double integral, a spreadsheet was used, similar to model 2. Values of ‘r’ were 
taken from 0.05 to 1, with intervals of 0.05. Then, ‘h’ was calculated for each value of ‘r’ using the 
relation found previously. Each pair of ‘r’ and ‘h’ values was substituted into the integral and entered 
into Wolfram Alpha. A part of the spreadsheet used (found in the appendix) is shown in figure 22.


Following this, a graph plotting ‘S’ against 
‘r’ was generated, which would visually 
indicate the ‘r’ value which produces the 
minimum value of ‘S.’ This graph is shown 
below in figure 24.




Figure 23 shows the optimal configuration as determined through this model, where the surface area of 
the lantern is minimal. Hence, this method was successful in optimising floating lanterns.


Evaluation


Two out of three models used in this investigation successfully yielded results. The two optimal values 
of ‘r’ found, which were 0.525 metres and 0.3 metres, had a significant difference between them. 
However, this is understandable since the lantern modelled by r=0.525m did not resemble any realistic 
shape of a floating lantern. However, the accuracy of these results cannot be verified since producing 
and testing real floating lanterns would be difficult and wasteful.


Since spreadsheets were used for models 2 and 3, only a small number of ‘r’ values could be taken into 
account. Hence, the results are only approximations that indicate the interval of ‘r' closest to the 
optimal value. This may have been overcome by the use of more sophisticated computation tools or 
techniques.
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Figure 24 Plotting ‘S’ against 'r'Figure 23 r=0.3, h=1.796460972

Figure 22 Spreadsheet used to evaluate ’S’ for model 3



While models 2 and 3 resemble the shape of a lantern as closely as possible at the level of this 
investigation, there are still nuances that were not accurately reflected in the models. For example, most 
lanterns have a circular cross-section at the bottom and a square cross-section at the top, but this 
could not be taken into account.


Conclusion


This investigation provides an insight into the approximate shape of an optimal floating lantern. It also 
indicates which mathematical models can be used most effectively for this problem. Surprisingly, model 
1 failed to produce an answer due to the emergence of a hypergeometric function, while model 3 
brought forth an elegant solution. This shows that fundamental and simple models do not necessarily 
provide the simplest answers. In this case, the best choice was the teardrop model, which not only 
simulated the shape of a lantern most accurately, but also brought the practical benefits of a simple and 
streamlined calculation process.


The models used in the investigation can also be applied to other similar situations. Perhaps the model 
that could lend itself to the largest range of problems would be the solid of revolution since it can be 
used to simulate any shape with circular cross-sections. Quadratic solids of revolution in particular 
could be used to model objects such as Chinese lanterns and vases. Similarly, model 3 would be 
extremely useful in modelling hot-air balloons, which are almost exactly the same shape as an inverted 
teardrop.


Overall, floating lanterns were an interesting topic to explore as they allowed me to delve into a range of 
new mathematical concepts such as surface integrals and parametric equations. This also allowed me 
to engage with the link between maths and real-world objects, which was a valuable and rewarding 
process. 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Appendix 

Code used to simplify ‘S’ for model 1:


Integrate[2pi*(0.356825*Sqrt[1/
(0.0476563(h^5)+0.135417(h^3))])*(y^2-1)*Sqrt[1+4((0.356825*Sqrt[1/
(0.0476563(h^5)+0.135417(h^3))])^2)(y^2)],{y,-0.75h,0.25h}]+(pi*(0.356825*Sqrt[1/
(0.0476563(h^5)+0.135417(h^3))])^2*((0.25h)^4-2*(0.25h)^2+1)) 

Code used to plot ‘S’ against ‘h’ for model 1:


Plot[(0.127324080625` (1-0.125` h^2+0.00390625` h^4) pi)/(0.135417` h^3+0.0476563` 
h^5)+0.71365 Sqrt[1/(0.135417` h^3+0.0476563` h^5)] pi (0.0175449 h (h^2 (6.01136 +2.84153 
h+1. h^3) Sqrt[1.` +6.011360122507414`/(2.8415340678986833` h+1.` h^3)]+(-42.7474-2.84153 
h^3-1. h^5) Hypergeometric2F1[-0.5,0.5,1.5,-(6.011360122507414`/(2.8415340678986833` h+1.` 
h^3))])+0.0058483 h (h^2 (0.667929 +2.84153 h+1. h^3) Sqrt[1.` +0.6679289025008237`/
(2.8415340678986833` h+1.` h^3)]+(-42.7474-2.84153 h^3-1. h^5) 
Hypergeometric2F1[-0.5,0.5,1.5,-(0.6679289025008237`/(2.8415340678986833` h+1.` h^3))])),{h,
0.01,2}] 

Spreadsheet used to calculate values of ‘S’ for model 2:


Spreadsheet used to calculate values of ‘S’ for model 3:
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